A new simulation method has been developed and used to model mechanical properties of materials at many different length scales, from the nanoscale where an atomic description is appropriate, through a mesoscale where dislocation based descriptions may be useful, to macroscopic length scales. In some materials, such as nanocrystalline metals, the range of length scales is compressed and a polycrystalline material may be simulated at the atomic scale. It is observed how the grain boundaries contribute actively to the deformation. At grain sizes below 5-10 nm deformation in the grain boundaries dominate over the traditional dislocation-based deformation mechanisms. This results in a reversal of the normal grain size dependence of the yield stress. It is shown that the material becomes softer when the grain size is reduced.
Loading....